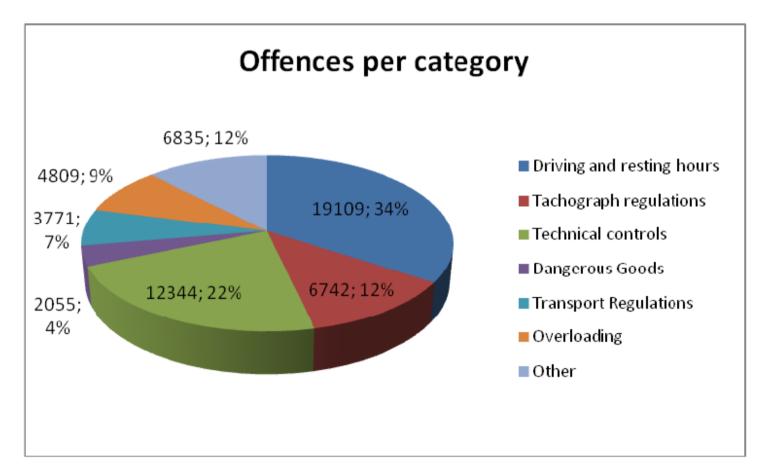


Associazione nazionale imprese gas tecnici, speciali e medicinali

Sicurezza del carico e ancoraggio del carico sui veicoli



Incidenti e fissaggio del carico

- Euro Contrôle Route (ECR), associazione di 14 paesi europei per il controllo dei trasporti su strada, osserva che:
- Il 25% di tutti gli incidenti di veicoli commerciali in Europa sono causati da carichi non adeguatamente ancorati.
- Più di 2300 incidenti all'anno sono dovuti alla scarsa sicurezza del carico.

Incidenti e overloading

Il sovraccarico è un punto fondamentale!

Fonte: ECR summary control weeks result 2010

Forze d'inerzia durante il trasporto su strada

Il carico dei veicoli durante la marcia normale (Normal traffic driving condition) è sottoposto ad accelerazioni longitudinali e trasversali esprimibili come frazione di g (accelerazione di gravità).

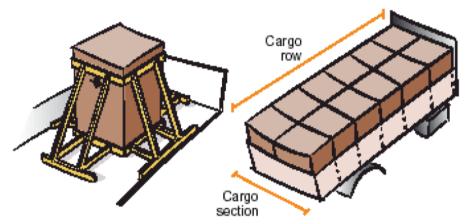
Ad esempio nel caso di una frenata di emergenza la forza esercitata dal carico sulla parte anteriore del veicolo sarà pari a circa 0,8 g x il peso del carico (se carico 1,5 t , F= 1500 Kg x 0,8g= 1200daN)

Inerzia e forze di attrito

- Quando un veicolo frena il carico continuerà, per inerzia, a cercare di muoversi nella direzione di marcia.
- Più forte è la frenata, più il carico sarà 'spinto' in avanti. Se il carico non è correttamente ancorato continuerà a muoversi in avanti in modo indipendente dal veicolo!
- Quando il veicolo cambia direzione il carico sarà spinto lateralmente verso l'esterno della curva (forza centrifuga)

La sola forza di attrito non è in grado di evitare lo scivolamento/ribaltamento del carico

Metodi di trattenuta del carico

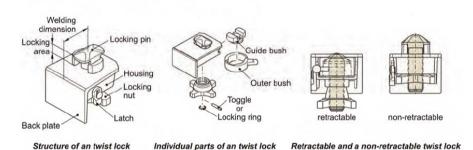

- I principali metodi di trattenuta del carico sono:
- Bloccaggio
- Fissaggio
- Ancoraggio diretto con cinghie
- Ancoraggio Top-over con cinghie
- Combinazione di questi metodi

Tutti i sistemi di trattenuta del carico si combinano con l'attrito tra carico e pianale

In generale il fissaggio del carico consiste nell'equilibrare le forze di un carico mediante fissaggio, bloccaggio e/o ancoraggio

Metodi di trattenuta del carico Bloccaggio

3.1. BLOCKING


Il carico è stivato in modo tale da occupare tutto lo spazio (senza lasciare vuoti) e a filo delle strutture fisse (es.sponde)

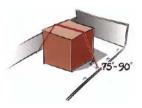
Metodi di trattenuta del carico Locking (fissaggio)

Twist locks

Twist locks either can be lowered or cannot be lowered.

Containers, cisterne mobili CGEM devono essere trasportati su veicoli con telaio attrezzato per il trasporto di container e casse mobili UIC

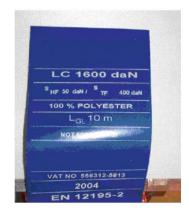
Metodi di trattenuta del carico Locking (fissaggio)



Cesti e pacchi bombole possono essere trasportati su pianali attrezzati con sistemi di bloccaggio con ganci a comando pneumatico

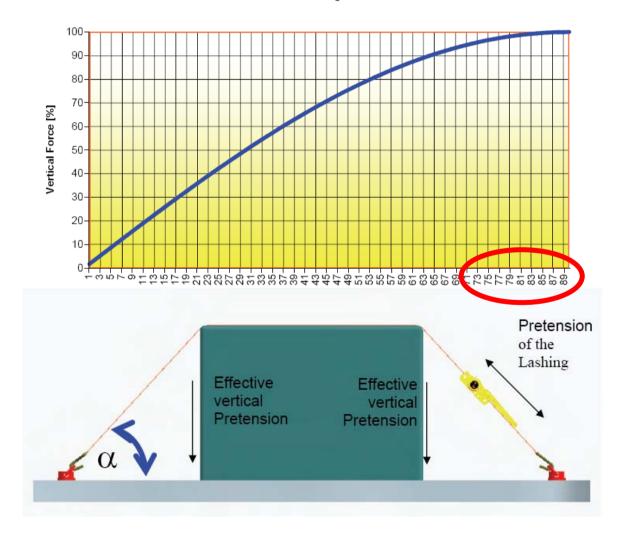
- Ancoraggio per attrito (top over lashing): procedimento di ancoraggio in cui la forza di attrito è potenziata aggiungendo una componente di forza verticale al peso del carico
- Ancoraggio diretto: Procedimento di ancoraggio in cui gli ancoraggi sono fissati direttamente al carico o a punti di attacco destinati a tale scopo

TOP-OVER LASHING SLIDING

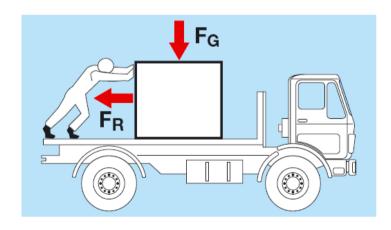

STRAIGHT/ CROSS LASHING SLIDING

A differenza del sistema di bloccaggio il metodo di ancoraggio per attrito spinge il carico sul piano del veicolo producendo una connessione positiva nella direzione verticale verso il basso.

- Sono disponibili cinghie in Poliestere (PES), Poliammide e Polipropilene
- Per l'ancoraggio del carico su mezzi pesanti sono di solito utilizzate:
 - cinghie di sicurezza in PES (etichetta di colore blu) conformi alla norma UNI EN 12195-2
 - cinghie con capacità di lavoro LC (carico massimo in condizioni di trazione) di 2000 ÷ 2500 daN



- Il calcolo del numero di cinghie per la prevenzione dello spostamento e del ribaltamento del carico deve essere effettuato in base ai seguenti standard:
- UNI EN 12195 1 Calcolo delle forze di ancoraggio.
- IMO/ILO/UNECE Method.
- Fondamentali per entrambi i metodi sono:
 - Coefficienti di attrito dinamico
 - Angolo tra cinghia e piattaforma di carico
 - Stf della cinghia (forza di tensionamento)


Interaction between the angle of the lashing and the vertical componet of the tension force of the lashing

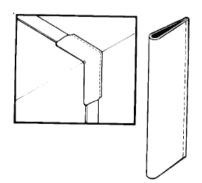
8.2.2. Dynamic friction table • Dynamic friction factors of some usual goods μ_{D}

Combination of materials in the contact surface	Friction factor uD	
PALLETS		
Resin bonded plywood, smooth – Europallet (wood)	U ₃ Z	
Resin bonded plywood, smooth – box pallet (steel)	0,25	
Resin bonded plywood, smooth – plastic pallet (PP)	0.2	
Resin bonded plywood, smooth – wooden pressboard pallets	0,15	
Resin bonded plywood, sieve structure – Europallet (wood)	0,25	
Resin bonded plywood, sieve structure – box pallet (steel)	0,25	
Resin bonded plywood, sieve structure – plastic pallet (PP)	0,25	
Resin bonded plywood, sieve structure – wooden pressboard pallets	0,2	

$$F_R = F_G \cdot \mu$$

Qualora non conosciuti, i coefficienti di attrito devono essere determinati

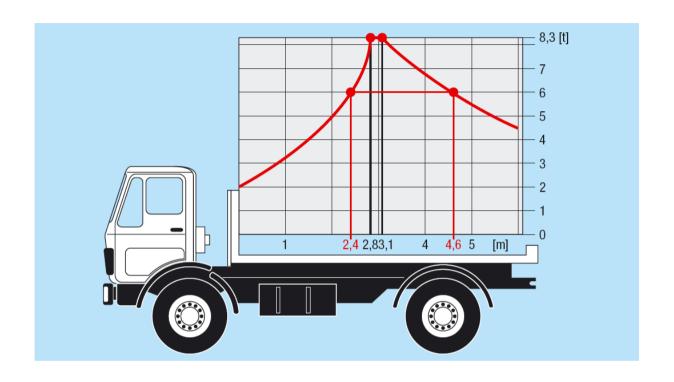
Metodi di trattenuta del carico Cinghie di ancoraggio del carico



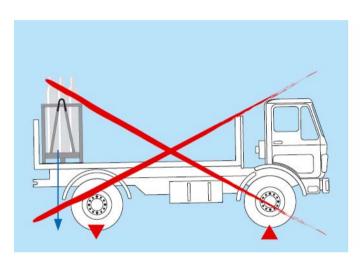
NON UTILIZZARE CINGHIE E TENSIONATORI DANNEGGIATI (STRAPPI, TAGLI, ROTTURE NELLE FIBRE DEFORMAZIONI ECC.)

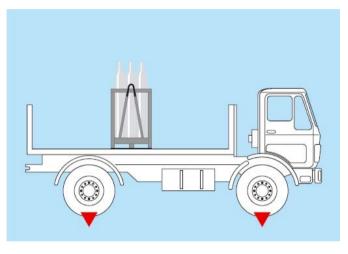
Metodi di trattenuta del carico Cinghie di ancoraggio del carico

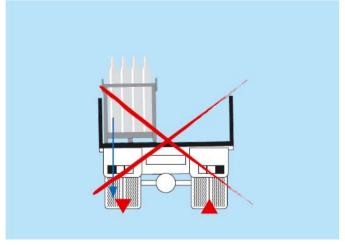
- Solo le cinghie in tessuto (PES) progettate per legatura ad attrito la cui etichetta riporta la sigla **Stf** devono essere utilizzate per l'ancoraggio ad attrito
- Devono essere utilizzate solo cinghie con etichetta leggibile
- Le cinghie in tessuto non devono mai essere utilizzate se annodate
- Le cinghie in tessuto devono essere eliminate o restituite al fabbricante per la riparazione se mostrano segni di danneggiamento:
 - In caso di contatto con prodotti chimici, una cinghia in tessuto non deve essere più utilizzata
 - Per le cinghie in tessuto (da eliminare): strappi, tagli, scheggiature e rotture nelle fibre di sostegno del carico e nelle maglie di trattenimento, deformazioni derivanti da esposizione al calore
 - Per i ganci terminali e i tensionatori (cricchetti): deformazioni, fessure, segni pronunciati di usura, segni di corrosione

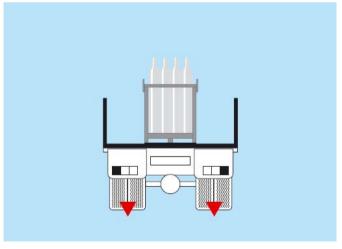


Nel caso di bordi taglienti devono essere utilizzate delle protezioni angolari









P.T.T. = 16 t max. carico ammesso sull'asse anteriore = 6 t max. carico ammesso sull'asse posteriore = 10t Carico utile = 8,3 t Tara = 7.7 t

Carico/Scarico Semirimorchi parcheggiati

AVVISO

Data: 29.04.2011 Owner: RISQ

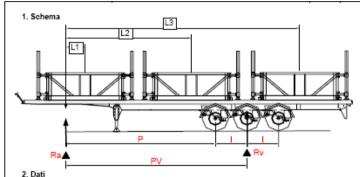
INCIDENTI DA RIBALTAMENTO DEI SEMIRIMORCHI PARCHEGGIATI

L'attività di carico e scarico dei semirimorchi per il trasporto bombole può generare incidenti a causa di una non adeguata modalità di distribuzione del carico sugli assi del veicolo.

Sono stati segnalati inoidenti dovuti al ribaltamento di semirimorchi parcheggiati senza trattore agganciato e non adeguatamente sostenuti durante le operazioni di movimentazione del carico.

Il semirimorchio parcheggiato senza trattore deve essere sempre dotato di un cavalletto regolabile di sicurezza (15 t di portata) da collocare al di sotto della piastra di aggancio (dietro al perno di articolazione).

Durante le operazioni di carico e scarico, devono essere adottate le seguenti buone pratiche


- Le operazioni di movimentazione del carico su un semirimorchio devono essere effettuate soltanto se il semirimorchio è agganciato ad un trattore o è dotato di un cavalletto di sigurezza.
- Il carico/scarico deve iniziare soltanto se il semirimorchio è in sosta presso le aree stabilite, con il freno di stazionamento inserito, i cunei di arresto posizionati (almeno n. 2 cunei contrapposti).
- Il carico deve essere sempre equamente distribuito sugli assi.
- Il carico dei semirimorchi deve procedere caricando prima la zona degli assi, poi la parte anteriore e successivamente lo sbalzo posteriore.
- Lo scarico dei semirimorchi, viceversa, deve procedere dapprima scaricando lo sbalzo posteriore poi la parte anteriore e infine la zona al di sopra degli assi.

Il carico deve essere sempre equamente distribuito sugli assi

Il carico dell'automezzo deve procedere caricando prima la zona degli assi, poi la parte anteriore e solo dopo lo sbalzo posteriore.

Viceversa lo scarico dell'automezzo deve avvenire dapprima scaricando lo sbalzo posteriore, poi la parte anteriore e infine gli assi.

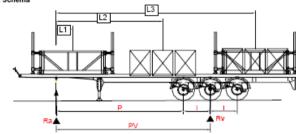
Mt Tt Mr	= = =	44000 8000 12000
Мр	=	27000
Ts	=	6400
Tp	=	5600
P	=	6200
1	=	1310
Ps	=	9180
L1	=	750
L2	=	5200
L3	=	9700
	Tt Mr Mp Ts Tp P I Ps L1 L2	Tt = Mr = Mp = Ts = Tp = P = I = Ps = L1 = L2 =

3, Calcoli Ripartizione Pesi Scarabei

Peso totale scarabei	Psx3	Ms	=	27540
Passo virtuale	PV = P+I	Pv	=	7510
Ripart. peso scarabei su asse virt.	Rv=(PsxL1+PsxL2+PsxL3)/Pv	Rv	=	19130
Ripart. Peso scarabei su perno ancora	ggio Ra = Ms - Rv	Ra	=	8410

4. Verifica ripartizione pesi

	Rat Perno ancorag.	Rvt Assi Posteriori	Totale
distribuzione tara semir.	800	5600	6400
distribuzione pesi scarabei	8410	19130	27540
Total	9210	24730	33940
Peso massimo ammesso	12000	27000	36000
	VERIFICATO	VERIFICATO	VERIFICATO


5 Verifica Rapporto di traino

Rtr = Rvt/(Tt + Rat) 1,44 < 1,4

6 Verifica del rispetto del 60% del peso massimo ammesso sugli assi posteriori Lm (punto 4,2,1 EN 13807)

Peso massimo ammesso sugli assi posteriori Lm = Rvt/Mt 0,56 < 60%

1. Schema

2. Dati			
Peso Complessivo trattore + semirimorchio	Mt	=	44000
tara massima trattore	Tt	=	8000
Peso massimo ammesso su perno di ancoraggio	Mr	=	12000
Peso massimo ammesso sugli assi posteriori	Мр	=	27000
tara semrimorchio	Ts	=	6400
Ripartizione tara Semirimorchio su assi posteriori	Tp	=	5600
passo	P.	=	6200
distanza fra assi posteriori	1	=	1310
peso singolo scarabeo	Ps	=	9180
Peso totale dei 6 pacchi bombole	Pp	=	10800
Distanza 1º scarabeo dal perno di ancoraggio	L1	=	750
Distanza dei pacchi bombole dal perno di ancoraggio	L2	=	5000
Distanza 2º scarabeo dal perno di ancoraggio	L3	=	9700

3, Calcoli Ripartizione Pesi Scarabei e pacchi Peso totale scarabei + pacchi bombole Ps x 2+Pp Ms = 29160 Passo virtuale PV = P+I Pv = 7510 Ripart. peso scarabei su perno ancoraggio Ra = Ms - Rv Ra = 9196

4. Verifica ripartizione pesi

	Rat Perno ancorag.	Rvt Assi Posteriori	Totale
distribuzione tara semir.	800	5600	6400
distribuzione pesi scarabei	9196	19964	29160
Total	9996	25564	35560
Peso massimo ammesso	12000	27000	36000
	VERIFICATO	VERIFICATO	VERIFICATO

5 Verifica Rapporto di traino

Rtr = Rvt/(Tt + Rat) 1,42 < 1,45

6 Verifica del rispetto del 60% del peso massimo ammesso sugli assi posteriori Lm (punto 4,2,1 EN 13807)

Peso massimo ammesso sugli assi posteriori Lm = Rvt/Mt 0,58 < 60%

Controlli prima della partenza

- → Prima della partenza effettuare un controllo sulla sicurezza del carico e del veicolo
 - → Utilizzare check list di controllo del carico per ogni veicolo carico in uscita
 - →Le check list devono essere sottoscritte dal personale interno e dal conducente

Sovraccarico → RESPONSABILITA' CONDIVISA (D.LGS 286/2005)

Sovraccarico → NO TOLLERANZA PER ADR

Linee d'azione

- →In generale: Approccio più scientifico al problema con meno improvvisazioni!!
- → Safety Bluprint sulle operazioni di carico e scarico (Rischi, buone pratiche, DPI, qualifiche)
- → Linea guida sulla formazione dei conducenti e degli operatori per le operazioni di carico/scarico e ancoraggio del carico
- → Formazione: corsi per l'apprendimento delle tecniche di "Load securing"
- → Certificazione "Load securing method"

LOAD SECURING

is mandatory for conformity with the national regulations governing transport of dangerous goods by road.

Vehicles with no possibility for securing loads must not be loaded!

Guidelines and Standards for Cargo Securing

→ European Best Practice Guidelines on Cargo Securing for Road Transport

→ IMO/ILO/UN ECE

Guidelines for packing of cargo transport units (CTU's)with IMO Model Course 3.18 Guidelines and Standards for Cargo Securing

→ Standard EN 12195-1

Load restraint assemblies on road vehicles -Safety -Part 1: Calculation of lashing forces

→ Updated version Standard prEN12195-1 (rev: 2009-1)

Load restraining on road vehicles -Safety -Part

1 Calculation of securing forces

ASSOGASTECNICI
Associazione nazionale imprese gas tecnici,